MULTINATIONAL ACTIVITIES OF MA JOR
U.S. AUTOMOTIVE PRODUCERS

Volume V -- Diffusion of Production and Sales Operations Abroad

Robert C. Ronstadt
William Casey
J.P. Jeannet
John Marthinsen
Robert Whorf

```
Robert C. Ronstadt Associates, Inc. 46 Glen Street Dover MA 02030
```


Dept. of Transportation
SEPTEMBER 1978
FINAL REPORT

Prepared for

U, S, DEPARTMENT OF TRANSPORTATION

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

Form DOT F 1700.7 (8-72)

FOREWORD

This is Volume V on the multi-national activities of the major U.S. automotive producers. Volume II compiled data from public and private sources on their foreign facilities and operations. Volume III evaluates their research, development, and engineering performed abroad. Volume IV presents a preliminary evaluation of the multinational aspects of technology innovation and transfer between the parent organization of the companies and their subsidiaries abroad.

The purpose of this Volume is to evaluate the foreign manufacturing and sales activities of the General Motors Corporation, Ford Motor Company, and Chrysler Corporation.

In the following pages, data, accessed from the databank of the Harvard Business School's Multinational Enterprise Project, are presented, summarized and analyzed. Special programs were written to access the data from General Motors, Ford, and Chrysler Corporation and to foremat the data for variables related to principal activity, location, size, ownership, markets, etc.

AMC is omitted since its multinational diffusion is considerably limited, especially relative to the other three U.S. automotive producers.

For most exhibits, the data represent the number of foreign subsidiaries for various variables. For example, Exhibit 3 shows the number of foreign subsidiaries for several different activities (manufacturing, sales, etc.)

The term "latest" refers to 1976.

The term "at entry" refers to when subsidiaries joined their respective multinational systems.

The term "exited" refers to when subsidiaries left the multinational system.

The term "other" refers generally to non-manufacturing and non-sales subsidiaries that are essentially financial subsidiaries or subsidiaries established for parts distribution and warehousing.

The term "unknown" refers mainly to extremely small sales subsidiaries with sales of less than $\$ 1$ million, according to the Harvard Project's data coordinator.

Finally, please note that subsidiaries under the R\&D category register zero in many exhibits. The zero result means no subsidiary has been created or acquired abroad whose sole or primary purpose is to perform research and development. This conforms with our findings discussed in the Report on the Evaluation of R\&D Abroad (Volume III). However, other data from our research and the HBS databank show R\&D has been performed abroad within (and secondary to) subsidiaries established primarily for manufacturing purposes.
syoigud nolsuandot jiblaw

Section Page
l. Objectives 1
2. Summary of Key Findings 2
3. Policy Formulation and Theories of International 4
Trade and Investment
4. Decision to Invest in Automotive Production and Sales Subsidiaries Abroad 8
5. Number, Size and Location of Production and Sales Subsidiaries Abroad 15
6. Principal Sales Markets of Production and Sales Subsidiaries Abroad 19
7. Implications of Findings for Theory and Policy 22
8. Exhibits 26
9. Glossary 106
Appendix Report of Inventions 111

1. OBJECTIVES

The principal objective of this report is to analyze the multinational spread of production and sales activities of the three major U.S. automotive producers. The specific objectives are to determine
a) where foreign subsidiaries participate in manufacturing and sales efforts;
b) the timing of these investments in terms of the approximate date when production and sales operations were initiated abroad;
c) the size and general nature of these operations;
d) the purpose of production and sales operations abroad in terms of the final destination of products (domestic market, general exports, exports to the U.S. parent); and,
e) ownership patterns for production and sales subsidiaries abroad.
2. SUMMARY OF KEY FINDINGS

Principal findings derived from recent interviews with automotive managers plus other data spanning the entire history of production and sales investments made abroad by the three major U.S. automotive companies support the Hymer Theory and the Product Life Cycle (PLC) Theories* of U.S. international trade and investment.

The significance of this general observation is discussed at the end of this report. The conclusion reached by this discussion is that an increased likelihood exists for:
a) continual and increased pressure on the U.S. trade position from automotive imports over the long term as long as the existing product Life Cycle is followed by the U.S. producers;
b) continual expansion abroad by the U.S. automotive multinationals in Latin American, Far Eastern, Middle Eastern, and African markets as a principal source of sales growth as long as the existing Product Life Cycle is followed by the U.S. producers.

The key findings supporting these general
observations about the adherence to a blending of the Hymer/ PLC Theories by the three major U.S. automotive multinationals come from information about:

```
*Subsequently defined.
```

a) their motivations for investing abroad;
b) the timing and location of their foreign sales and manufacturing investments;
c) the concentration of their resources abroad over time; and
d) the market destination of sales abroad over time.
3. POLICY FORMULATION AND THEORIES OF INTERNATIONAL TRADE AND INVESTMENT

Our evaluation of the multinational diffusion of sales and production operations includes an assessment of findings in terms of existing theory about international trade and investment. The rationale for this assessment is related to the policy formulation process. In short, we believe the formulation of policy that is derived from knowledge explained by theory is better than policy based on information alone.

Policy formulation is a hazardous process at best. However, we feel the hazards can be lessened if events and activities are explained by partial or general models that provide predictive powers.

Several models or theories exist which provide explanations of international trade and investment. The principal ones are:
a) The Comparative Advantage Theory of International Trade;
b) The Product Life Cycle Model of

International Trade;
c) The Hymer Theory of Foreign Direct

Investment;
d) The Product Life Cycle Theory of Foreign Direct Investment;
e) The Capital Market Imperfections Theory of Foreign Direct Investment;
f) The Investment Portfolio Theory of Foreign Direct Inves rent;
g) The Oligopolistic Response Theory of Foreign Direct Investment.

Our purpose is not to describe each of these theories or their numerous variants since other sources provide this service in considerable detail.* Rather, we wish only to summarize the salient points of those theories which were useful in explaining our findings and observations drawn from interviews and data analysis.

Our findings on the multinational spread of sales and production investments by the three major U.S. automotive producers are explained by a combination of three theories: The Product Life Cycle (PLC) Theories of Trade and Investment and The Hyner Theory of Foreign Direct Investment.

The PLC models are partial, non-mathematical, dynamic interpretations of international trade and investment that predict trade and investment flows for some U.S. industries. Exhibit l summarizes the salient characteristics

[^0]and five phases of the trade model. Exhibit 2 summarizes the process of foreign direct investment predicted by the PLC model.

The blending of the PLC trade model with the investment model presents no difficulty. Both rest on technological advantages developed by U.S. producers and embodied in differentiated products. Over time, these advantages erode, causing predetermined trade and investment effects.

The PLC models of trade and investment are also compatible with Hymer's Theory of Foreign Direct Investment. The critical feature of Hymer's Theory is that a foreign investor must also have some advantage to compete successfully abroad. Hymer hypothesized two advantages which allowed successful foreign investment:

1) economies of scale providing a cost advantage;
2) proprietary knowledge providing a better product advantage, i.e. a differentiated product.

The ensuing analysis shows, we believe, that the three U.S. automotive producers are adhering closely to trade and investment patterns predicted by these theories. Section 4 investigates the general sequence (timing) of investments and motivating factors. Section 5 discusses the geographic concentration of resources abroad. Section 6 looks at the market purpose of automotive investments abroad and their trade patterns.

We have chosen to examine and present these topics because prior research has shown that the PLC model best describes international trade and investment patterns for industries developing high income products. Two reasons these high income products are commercialized earliest in the United Statesare that the requisite U.S. market segment is larger than comparable segments in foreign markets and the U.S. segment is sufficiently large to support the investment in manufacturing operations. The PLC model then predicts the start-up of subsequent manufacturing operations in foreign markets as income levels increase to the point that market segments reach an economic threshold size.

If the PLC model reflects the experience of the U.S. automotive industry, we expect to find a positive association between location and:
a) the timing of investments made abroad, i.e., earlier investments in larger market, highincome nations;
b) the concentration of resources over time in the larger market nations;
c) the commencement and concentration of exports eventually from larger foreign markets.
4. DECISION TO INVEST IN AUTOMOTIVE PRODUCTION AND SALES SUBSIDIARIES ABROAD

Interviews with managers and supporting data provide evidence for two key findings about the decision made by the three major U.S. automotive multinationals to invest in production and sales subsidiaries abroad:
a) the decision to invest in manufacturing abroad is caused initially by a desire to protect existing markets serviced by sales subsidiaries;
b) the decision to make direct investments in manufacturing is caused by a desire to protect proprietary technology.

4.1 FINDING I: MANUFACTURING ABROAD CAUSED BY NEED TO PROTECT EXPORT MARKETS

Interviews with automotive managers indicated that the companies established sales subsidiaries to handle export sales initially but were forced to consider making manufacturing investments when:
a) the local markets became large enough to support assembly and possibly component manufacturing and the threat arose that competitors might start operations; and/or
b) local governments forced manufacture by imposing high import tariffs and local content requirements.

These views were supported by various sources of information collected during our project.

First, automotive managers noted that sales subsidiaries always preceded the establishment of manufacturing investments abroad. The data presented in Volume II showed, in fact, that sales sussidiaries existed in 28 nations where no manufacturing operations had been established.* Conversely, no nation had only manufacturing operations.

Although these data indicate the sequence of foreign investment $\bar{b} y$ activity, they do not confirm the motivating factors (i.e. emerging market size and/or government decrees). However, data on the timing and location of manufacturing investments do show an early preference for the larger markets of Western Europe (See Exhibit 3, 4 and 5). Also, Exhibit 6 presents data indicating the number of automotive subsidiaries still alive in 1960, 1970 and 1976. These data are partitioned into regional groupings in Exhibit 7. A glance at Exhibit 7 reveals that Western Europe had the largest number of automotive subsidiaries in 1960, 1970 and 1976. However, its domination has deteriorated over the years. In 1960, Western Europe lodged 63\% of all nonU.S. automotive subsidiaries. In 1970, this concentration had been reduced to 54% and in 1976, it fell to 51%. (See Exhibit 8)

[^1]Clearly, the deterioration is in relative terms and not in absolute terms; and, it points to the relative growth in other areas of the world. For instance, Latin America increased its subsidiaries by over 150% between 1960 and 1976; the Middle East had a growth of subsidiaries by 250% and the Far East increased its subsidiaries by 570% during these same years. By comparison, Western Europe's growth during this period was 50%. Also, the majority of this growth was from 1960 to 1970. Between 1970 and 1976, only three subsidiaries were added, a growth of approximately 2% 。

Finally, the historical record provides support for the impact of legislation on tariffs local content. Exhibit 9 presents information on the approximate date when tariffs, local content requirements etc. occurred and when manufacturing operations commenced for selected nations.

4.2 FINDING 2: DESIRE TO PROTECT PROPRIETARY KNOWLEDGE CAUSES SELECTION OF "DIRECT" INVESTMENT IN MANUFACTURING

The prior information regarding the need to manufacture abroad does not explain why the U.S. automotive multinationals decided to make direct investments in manufacturing themselves as opposed to licensing local suppliers to perform the manufacturing function.

Discussions with automotive managers indicated that the decision to use the direct investment vehicle was
made (and continues to be made) to protect proprietary technology. Interviewees stated that they feared licensing of certain kinds of technology would create foreign suppliers with the capability to compete against them in other foreign markets in the future. Also, extensive licensing in place of direct investment would limit international manufacturing flexibility.

Data on ownership of foreign subsidiaries support the view that preserving proprietary process technology is a critical variable affecting the choice of investment vehicle. The expectation is that majority owned investments should be preferred if proprietary technology is a critical factor.

Exhibits 10 and 11 compare the ownership status of the automotive multinational subsidiaries both "at entry" and "at latest" (i.e., l976). The number of subsidiaries with 96% to 100% control declined from 118 to 87 in manufacturing and from 142 to 93 in sales. However, if these numbers are transferred into percentage terms, as is done in Exhibit l2, the relative share of wholly-owned subsidiaries to total automotive subsidiaries has changed little over the years. In fact, a calculation of the per cent of majority-held ventures versus the per cent of minority-held ventures shows an increase in the per cent of majority-held manufacturing interests. (See Exhibit l3.)

The three major automotive multinationals shows a clear preference for wholly-owned operations despite the advantages of joint ventures. These advantages include:

1) better management because of superior knowledge of the market;
2) better access to local capital markets;
3) better access to local raw material and other goods markets;
4) faster entry into the market;
5) more relevant technology for the local market.

The major disadvantage in joint ventures is the dilution of control.* Consequently, another way of interpreting the data is to say the three U.S. producers will tend to tolerate joint ventures (dilution of control) over the long haul only when:
a) venture partners offer one or more of the above advantages;
b) the U.S. majors cannot acquire majority control.

In fact, the historical record suggests the U.S. producers may tolerate a joint venture relationship over the long haul only when the partners have proprietary technology the majors feel they need or may need in the future. Otherwise, they will:

1) not enter into the venture;
2) enter but leave if they cannot acquire or retain majority control (e.g. GM in India).

The principal examples are European acquisitions and Japanese minority holdings. For Europe:
*For a more elaborate discussion of the costs and benefits associated with joint ventures, see: John Stopford and Louis Wells, Managing the Multinational Enterprise, (Basic Books, N.Y., 1972), p. l01-103.
a) GM's acquisitions of Opel (Germany) and Vauxhall (United Kingdom);
b) Chrysler's acquisitions of Simca (France) in 1958; Routes Motors (United Kingdom) in 1964; and Barrieros Ltd. in Spain.

In Japan:
a) GM's minority position (34\%) with Isuzu to provide vehicles (embodied technology) for sale by GM in the United States;
b) Ford's position (50\%) with Japanese Automotive Transmission Company;
c) Chrysler's position (15\%) with Mitsubishi for production of the Dodge Colt.

Data on ownership classified by national and regional location support these observations. Exhibit la separates the ownership of the automotive subsidiaries by country and Exhibit 15 combines these countries into the nine previously defined regions. Exhibit 16 further develops the information in Exhibit 15 by calculating the per cent of each region's subsidiaries falling into the various ownership classifications.

Exhibit 17 reveals the ownership pattern of the fifteen countries abroad with the largest number of subsidiaries of the U.S. automotive companies. Because most of these countries (l2 of 15) are West European or Latin American, subsidiaries predominantly fall within the

96-100\% ownership categories. An interesting contrast is revealed in the case of Japan where over 70% of the cited subsidiaries are less than 51% owned by the automotive companies. Japanese governmental policies on direct foreign investment and ownership rank, of course, among the most restrictive in the world.
5. NUMBER, SIZE AND LOCATION OF PRODUCTION AND SALES SUBSIDIARIES ABROAD

Analysis of information on the number and size of production and sales subsidiaries established abroad provides three additional findings which support the PLC model. The three findings are:
a) The size of sales and manufacturing operations have grown abroad through a concentration of resources in particular foreign subsidiaries performing manufacturing operations, primarily in Europe;
b) The largest of these manufacturing subsidiaries are older investments operating in larger market nations, principally in Europe;
c) While the very largest of manufacturing subsidiaries are located in Europe, other large manufacturing centers are emerging outside Europe in selected nations, principally Brazil, South Africa, and Australia.

5.1 FINDING 1: CONCENTRATION OF RESOURCES IN PARTICULAR FOREIGN MANUFACTURING SUBSIDIAIRES

First, the largest subsidiaries abroad are manufacturing investments. This observation is valid whether the criterion for largeness is employees (Exhibit l8), sales, assets, or equity investment (Exhibit 19).

Second, the majority of resources in manufacturing and sales investments are located in relatively few subsidiaries and nations abroad. Approximately 50 subsidiaries (of 372) in about a dozen nations (of 59 with operations out of $2 l 0$ possible nations and territories) constitute the largest investments made by the U.S. producers. In general, the dozen nations represent the largest markets for passenger automobiles.

Exhibits 20 through 25 examine the relative size of resources in terms of sales for different locations.

Exhibit 20 shows sales categories for automotive subsidiaries by country of incorporation. Exhibit 21 partitions these data into their regional groupings. In every region, except Latin America, the majority of subsidiaries have sales over $\$ 10$ million (summarized in Exhibit 22). In fact, in Western Europe, Africa and Australia/New Zealand, the majority of subsidiaries have sales over $\$ 25$ million (summarized in Exhibit 22).

Exhibit 23 shows the sales distribution by qeographic region. Note that Western Europe alone has the overwhelming majority of subsidiaries in the "greater than $\$ 100$ million" category. Latin America, on the other hand, has its largest relative concentration in the "less than $\$ 1$ million" category. As financial size increases, Latin America's world subsidiary share constantly decreases. The Far East demonstrates a direct relationship between financial size and its relative share of total subsidiaries. However, most other regions have the highest relative portion of their subsidiaries in the $\$ 1-\$ 10$ million sales category. Thus,
even though the subsidiary concentration is deteriorating in Western Europe, the size of European operations vastly overwhelms operations in other foreign regions particularly in less developed areas.

Additional information can be gleaned from related tables. Exhibit 24 rank orders the subsidiaries in each country by financial classification and according to their total number of domestic subsidiaries. Exhibit 25 then transforms the information given in Exhibit 24 into concentration ratios for the top five, ten, and fifteen countries. Note that the top five countries account for over 42 of the "greater than $\$ 100$ million" category, but only (approximately) 23\% and 22\% respectively of the"\$25-\$100 million" and"\$l0-\$25 million" categories. A similar trend is found for both the top ten and top fifteen countries.

The geographic concentration in the automotive industry is clearly seen when one considers that over 86% of all subsidiaries with sales over $\$ 100$ million are in only fifteen countries. Furthermore, over 77% of the subsidiaries under $\$ 1$ million, over 52% of the subsidiaries with sales between $\$ 1$ million and $\$ 10$ million and nearly 50% of the subsidiaries with sales between $\$ 25$ million and $\$ 100$ million are located in these same fifteen countries.

Exhibits 26 through 31 have asset classifications for the multinational subsidiaries which parallel the sales information given in Exhibits 20 through 25. Exhibits 32 through 37 do the same for the equity position of the multinational subsidiaries. In each case, the results derived thus far are reinforced. In fact, the concentration
ratios in assets for the top five, ten and fifteen countries increase in the "\$25-\$l00 million" category and the "greater than \$l00 million" category, seemingly indicating the relatively greater capital intensiveness of these operations.

5.2 FINDING 2: OTHER LARGE MANUFACTURING CENTERS ARE EMERGING OUTSIDE OF EUROPE

The data in Exhibits 24,30 and 36 show the existence of sizeable operations outside Europe. For instance, Exhibit 24 has 20 subsidiaries in non-European nations with sales over $\$ 100$ million. Thirteen of these subsidiaries have assets in excess of $\$ 100$ million. Equity positions are lower, but the same holds for European subsidiaries. Exhibit 38 summarizes these data drawn from the base exhibits (Exhibits 20, 26 and 32). It shows 8 national locations outside Europe, Canada, and the United States with subsidiaries having more than $\$ l 00$ million in sales. However, two nations have lower asset positions (New Zealand and Venezuela) and only two nations have equity positions in excess of $\$ 100$ million (Brazil and Japan).

6. PRINCIPAL SALES MARKETS OF PRODUCTION AND SALES SUBSIDIARIES ABROAD

As noted earlier, automotive managers stated their organizations made manufacturing and sales investments abroad mainly to protect markets located within specific nations. Also, they stated some subsidiaries had started exporting to other nations including the United States.

These statements are consistent with the PLC scenario of international trade and investment. An analysis of information on the principal markets of production and sales subsidiaries abroad yields two findings which supports the interpretations of managers and the PLC model. They are:
a) the major market purpose of nearly all subsidiaries established abroad is to provide products and services for specific national markets;
b) a small number of older, larger manufacturing subsidiaries in selected nations (mainly Europe) do most exporting to other nations.

6.1 FINDING 1: PRINCIPAL MARKET IS NATIONAL MARKET FOR BOTH MANUFACTURING AND SALES SUBSIDIARIES

Exhibit 39 shows the number of automotive subsidiaries in each activity along with their share of exports. Exhibit 40 shows the per cent of each activity that falls into the export ranges established in Exhibit 39 . The key message of these exhibits is that both manufacturing and sales activities are performed predominantly for their domestic markets in 1976. In $\boldsymbol{m l}$ les, 93.5% of the subsidiaries export less than 10%. While the per cent drops to 61% for the manufacturing subsidiaries the majority still produce predominantly for the domestic market.

In terms of regional exportation, Exhibit 41 shows the number of subsidiaries in each country that fall into the various export categories. Exhibit 42 consolidates these data into their regional groupings. Finally, Exhibit 43 calculates the per cent of each region's subsidiaries that fall into the export classifications. In each region, the overwhelming majority export less than 10% of their products.

6.2 FINDING 2: FEW EUROPEAN MANUFACTURING SUBSIDIARIES DO MOST EXPORTING TO OTHER FOREIGN MARKETS

Data drawn from Exhibit 41 show that 15 subsidiaries in nine nations have 50% or more of their sales going to export markets. Exhibit 44 lists these nations and, excluding Canada, all are located in Europe. A significant share of these exports are, according to company sources, to other nations within Europe. Also,
data in Exhibit 39 show that 11 of these 15 subsidiaries are primarily manufacturing operations. Only 2 "known" sales subsidiaries export more than 50% of their sales.

Exhibit 45 also shows that 20 additional subsidiaries in 13 nations export 10 -to- 15% of their sales. Including the United States and Canada, European subsidiaries constitute 45% of this group (See Exhibit 44 for percentage breakdown by region). Again, Exhibit 39 shows all 20 subsidiaries were primarily manufacturing investments.
7. IMPLICATIONS OF FINDINGS FOR THEORY AND POLICY

The foreign investments of Ford, General Motors, and Chrysler are considerable in size and impact on the world economy. An examination of data on their sales and manufacturing investments abroad provides direct and indirect evidence which supports the Product Life Cycle models of international trade and investment and the Hymer Theory of foreign direct investment.

No direct (interview) evidence exists which supports the theory of Oligopolistic Response. In fact, indirect evidence shows the three producers entered some major foreign markets at quite divergent times. Also, no direct or indirect evidence was discovered in support of other theories of international trade or investment, specifically the Theory of Comparative Advantage; the Capital Imperfections Market Theory of foreign direct investment; the Investment Portfolio Theory of foreign direct investment.

One interesting finding about the Hymer Theory is that the motivation for direct investment abroad by the U.S. automotive producers is related to the desire to protect "special knowledge", specifically the protection of proprietary product and process technology.
and has nothing to do with economies of scale (which Hymer thought could be a rationale, i.e. lower costs . . . for making foreign direct investments).

The adherence of the major U.S. automotive multinationals to the PLC/Hymer interpretations of international trade and investment provides a basis for distilling a number of policy implications. The specific implications discussed in this report have particular relevance to U.S. public policymakers, although equally important policy implications can be derived for multinational managers or foreign public policymakers.

The major implications for U.S. public
policymakers fall into three basic categories. They are balance of payment, employment, and technological innovation implications. The implications are long term in nature; we may witness short-term deviations from them. Also, the policy implications assume the U.S. producers continue to follow the PLC scenario.

Balance of payment considerations relate to
the U.S. trade balance for passenger vehicles and net flows of automotive direct investment. The principal trade implication is that the return to a net export position is quite improbable in the future. The factors working against a net export position are:
a) continued import pressure in the U.S. market by foreign competitors and imports by the U.S. producers themselves;
b) reduced exports from the United States as the U.S. producers expand foreign manufacturing centers abroad.

Direct investments in the United States by foreign automotive competitors may soften the import problem but will not strengthen exports. Unless a new PLC is created, the U.S. trade outlook for passenger vehicles is bleak even under plausible optimistic assumptions.

The most likely scenario for U.S. automotive flows of direct investment is continued outflow. The principal growth markets for the three U.S. producers are third world markets where emerging middle classes will be arle to afford downsized and traditional sized vehicles. The least uncertainty, lowest risk, fastest payback investments for the U.S. producers are associated with these markets.

The U.S. employment implications of the study's findings are equally pessimistic over the long haul. At best, the foreign investment holdings of the three U.S. producers may provide a continued flow of disembodied technology which may help maintain or even increase U.S. employment. Yet, in a stabilizing, possibly mature
industry, large growth in employment will follow market growth and new manufacturing investment. For the three U.S. producers, significant employment growth will occur abroad, chiefly in third world nations.

The implications of the findings for U.S. innovation, combined with the findings of Volumes III and IV, is that the three U.S. producers may choose to make no major commitment to new (non-traditional) technology. An RD\&E strategy consistent with continual expansion of multinational sales and production calls for heavy emphasis on cost reducing improvements. Incremental advances in conventional technology will be sought in order to produce the operating efficiencies needed to compete in price sensitive, mature product markets.

The ironic point is that current U.S. government policy is fostering this "operating efficiency approach" to innovation by the three major U.S. producers. Their RD\&E investments in new high-risk projects to develop non-traditional engine and fuel technology are essentially insignificant relative to investments in conventional technology.* But government requirements for incremental improvements in fuel economy, emissions control, and safety require a large portion of these expenditures in traditional technology. While the major U.S. producers complain vocally against these regulations, the government mandates will help them to compete in third world markets where fuel economy, and to a lesser extent, emissions control and safety, are critical issues.

[^2]8. EXHIBITS

Exhibit 1
Product Life Cycle Model of International Trade

Exhibit 2

Product Life Cycle Model of U.S.
Direct Investments Abroad in Manufacturing

Phase I: A large share of world's high/middle income products innovated first in United States because of favorable demand/supply factors. U.S. high/ middle income population provides large (often largest) market size for middle/higher income (but not luxury - e.g. Rolls Royces) products. Major supply need is to substitute scarce skilled labor (e.g. European car craftsmen) with unskilled labor and capital (e.g. via moving assembly line). All manufacturing plants (e.g. for Ford's Model T) located in the United States. A technological monopoly exists for initial U.S. producer.

Phase II: Other manufacturing plants located in selected higher income nations. Middle/higher income markets emerge abroad in sufficient size to support local production (usually major European nations first) and/or foreign government willing to subsidize and protect "infant industry". Initial U.S. producers may decide to make foreign direct investment to protect export market, or license technology to foreign suppliers, or do nothing. If technology is initiated by other U.S. or foreign competitors, they may make direct investment and preempt the foreign national market.

Phase III:Manufacturing investments continue to be located abroad by U.S. producer. The largest investments (usually the oldest) begin exporting to lower income nations, substituting U.S. exports in some cases, as capacity exceeds domestic consumption.

Phase IV: The larger, older manufacturing investments (often in Europe and Japan) begin exporting to the United States as they develop unique skills, product/ process technology, and capacity exceeds needs of domestic and other third nation markets.

Phase V: Selected nations with large manufacturing investments in lower income nations begin exporting to the United States and other nations.

Exhibit 3

Ford Motor Company

Some Major Dates and Events in Spread

of Operations Abroad

Year (s)	Nation(s)	Event
1903	U.S.	N.Y. export agent contracted to handle foreign sales.
1904	U.K.	Export agent contracted
1905	Canada	Assembly of U.S. cars
1905-07	Several Nations	Sales branches and over 20 dealers established in Germany, France, Belgium, Spain, Denmark, Sweden, Austria, and Russia
1911	U. K.	Assembly in Manchester of knocked down units (CKD's)
1912	France	Assembly of $\mathrm{CKD}^{\circ} \mathrm{s}$
1914	Argentina	Sales branch established
1916	Argentina	Assembly of CKD's
1919	Denmark	Assembly in Copenhagen
1920	Spain	Assembly in Cadiz
1920	Brazil	Assembly in Saơ Paulo
1920	Uruguay	Assembly in Montevideo
1922	Austria	Assembly in Trieste
1924	Sweden	Assembly in Stockholm
1924	France	Assembly operations expanded
1924	Chile	Assembly in Santiago
1925	Japan	Assembly in Yokahama
1925	U.K.	Assembly operations expanded
1926	Mexico	Assembly in Mexico City
1926	Germany	Assembly in Berlin

Exhibit 3 (continued)

Ford Motor Company

Year (s)	Nation(s)	Event
1925-27	Brazil	Assembly operations expanded
1925-30	South Africa	Assembly started
	Australia	Assembly started
	India	Assembly started
	Ceylon	Assembly started
	Malaysia	Assembly started
1932	U.K.	Major Manufacturing complex starts operation in Dagenham
1932	Germany	Major Manufacturing complex starts operation in Cologne
1932	Netherlands	Some local manufacturing
	Japan	Some local manufacturing
	Turkey	Some local manufacturing
	South Africa	Some local manufacturing
	Mexico	Some local manufacturing
Early	Brazil	Brazil begins shipping cam shafts to
1970 s	Argentina	Argentina and latter ships rocker arms to Brazil
Early	Australia	Both national sales begin exchanging
1970 s	New Zealand	chassis parts
1972	France	Large transmission plant started in
		Bordeaux for 100 \% export to other
1948	U.S.	International Division formed
1954	France	Sell operations to Simca
1954	Spain	Divest operations
1954	Italy	Divest operations
1964	South Africa	\$ll million engine plant constructed
1969	U.K.	Automotive complementation begins; started
	Germany	with tractors in 1967; Capri jointly produced by U.K. and Germany as first
		duced by U.K. and Germany as first European car
Early	Mexico	Begin shipping engines to Venezuela;
1970 s		also begin shipping engine blocks to U.S.

Exhibit 4
 General Motors Corporation
 Some Major Dates and Events in Spread of Operations Abroad

Year (s)	Nation(s)	Event
1919	France	Attempt to acquire Citroen is unsuccessful
pre-	Various	Export operations through sales agents
1925	Nations	and subsidiaries
1925	U.K.	Vauxhall Ltd is acquired for $\$ 2.6$ million
1926	Australia	GM Australia established for assembly operations
1929	Germany	Adam Opel A.G. is acquired 80% majority share for $\$ 26$ million. In 1931, remaining 20% purchased for $\$ 7.4$ million
1931	Australia	Holden acquired and merged with GM Australia Ltd.

Some Major Dates and Events in Spread

of Operations Abroad

Year(s)	Nation(s)	Event
1958	France	
1963	France of Simca acquired from Ford	
1964	U.K.	Share of Simca increased to 64% (purchased from Fiat). Later in- creased again to 77%
1967	U.K.	Minority share of Rootes Motors Ltd. acquired
1967	South Africa	Majority share of Rootes Motors Ltd. acquired
	Manufacturing complex built in Pretoria for $\$ 35$ million to replce older Capetown facilities acquired with Rootes acquisition.	

Exhibit 6
Number of foreign Subsidiaries

莒				E		シニッヂゥ	ニ゚ッェッ	NNNNN N

Exhibit 6 continued

Exhibit 6 continued

YEAH：		1960	1970	1976
CODE COUJTRY				
416	IAtija	0	（	0
417	－hivaco	0	＇	0
418	（：）RAX A	1	3	3
419	いいPいいGんL	1	2	1
420	SPA1C：	0	5	5
421	SaFubil	4	1	5
427		1	7	7
501	ALBAv1A	6	6	0
507	ANijCIRAA	0	$1:$	U
503	はいI．6AF1A	v	1	0
504	C7．ECHUSI，UVAKIA	0	0	0
505	CEPVAH\％（EAST）	v	1	0
506	GIrfictictic	0	d	0
507	HUNCAHY	0	v	0
508	POLA：IO	1	\because	0
509	HidA＇la	0	0	0
510	SA，NakI？0	1	1	0
511	リSSP（HUSSIA）	0	（；	0
512	x HG＇SLAVIA	\checkmark	v	0
601	ALGtM1A	0	1	1
64.2	1RAN．	n	0	1
603	IFAC	U	0	0
$6 \cup 4$	KuッA！	0	＂	0
6115	じい1	U	v	0
605	UAIAN	0	$1)$	0
607	Salint aharia	$(1$	C	1
60 A	SyNIA	11	10	0
609	IPJCIAL STATFS	$1)$	11	0
610	MGHPAIN	1）	\checkmark	0
611	CHAll	${ }^{\prime}$	u	0
612	OHOrAM	1）	＂	0
613	リじ入1	1	$1)$	0
614	ISF゚ EL	1.	＂	0
615		1	$1{ }^{1}$	0
616	Leminut	19	11	0
617	mald	9	＂	0
61%		11	＊	0
619	mindeco	1	1	1
620	mudchy ann oran	0	11	0
621	Nl＇ith	$(1$	$1)$	0

Exhibit 6 continued

YEAR：
country

－HLHOM rSitils
CORF

701 ARGIHANJSTAN ckilul
MALIIIV：ISI．AND位Hal

PAKISTAIA
Stichellies
 Bur 27－IOIN：CENTRA 8U：7\％－CULA：EAST A 80．י 2%－（ULI：WESTA BGI ABAFS ALU ISSAS BOI PDEFTCH SOMALILA

80ヶ Cabp：Verinf ISLA 807 CfYTRAD AFHICAN 8uA COClAO 1 SLARICS Buy íf．．COIGGO（GRA

B1，fAlmingy GIIN Q）fillivala

Exhibit 6 continued

Exhibit 6 continued

EXHIBIT 7

Data for U.S. Automotive Multinationals Number of Subsidiaries Still Alive in 1960, 1970, 1976

Area	Year		
	1960	1970	1976
North America	43	57	57
Latin America	22	55	59
Western Europe	79	119	122
Eastern Europe	0	0	0
Midale East	2	5	7
Near East	1	0	1
Africa	9	13	11
Far East	3	9	20
Australia/New Zealand	9	17	19
Total	168	275	296

Source: Consultants' calculations based on Exhibit 6 .

EXHIBIT 8

Data for U.S. Automotive Multinationals Subsidiaries Still Alive in 1960, 1970, 1976: Percentages

Area	1960	$\begin{aligned} & \text { Year } \\ & 1970 \end{aligned}$	1976
	Percentage		
North America	25.6	20.7	19.3
Latin America	13.1	20.0	19.9
Western Europe	47.0*	43.3*	41.2*
Eastern Europe	0	0	0
Middle East	1.2	1.8	2.4
Near East	0.6	0	0.3
Africa	5.4	4.7	3.7
Far East	1.7	3.3	6.8
Australia/New zealand	5.4	6.2	6.4
Total	100.0	100.0	100.0

Source: Consultants' calculations based on Exhibit 7.
*percentages excluding North America are:
63\% 54\% 51\%
Nation(s)
Major
European
Nations
Australia
Argentina

Brazil

Mexico

4
0
0
0
0

Argentina
95\% local content required
100\% local content required Data Related to Protectionist Requirements (Tariffs, Local Contents, etc.) and Commencement of Manufacturing Abroad by Major U.S. Automotive Producers
Date of Manufacturing Investment
U.K.(1925) Germany (1929) acquisitions by GM. In 1929 Ford begins backward integration into manufacturing Assembly started in 1926 by GM Australia PLty. In 1931, it is merged with Holden. Backward integration from assembly into manufacturing GM builds engine plant in 1965; Ford builds engine plant 1964; Chrysler builds plant (\$35 million) in 1967.
Major expansions in manufacturing
Same as above in Selected Nations
Data on Protection Requirements
Imposted by Nations
GM's Alfred Sloan notes mounting
 export markets GM begins buying car bodies from local supplier (Holden). Australian government applies pressure for more local production.
Minimum local content laws enacted
enacted
enacted
Local content laws enacted

1959
1959
1962
Early
$1960 s$
1971
1971

0T 7TTqTYXG

Exhibit 11
Number of Foreign Subsidiaries Classified
Number of Foreign Subsidiaries Cla
by Their Percent

Source:

EXHIBIT 12

Data for U.S. Automotive Multinationals Percentage of Activity in Each Ownership Category

A. At Entry

	1-49\%	50\%	51-95\%	96-100\%	Total
Activity					
Manufacturing	10\%	5	11	74	100\%
Sales	1\%	1.5	2.5	95	100\%

B. At Latest

	1-49\%	50\%	51-95\%	96-100\%	Total
Manufacturing	8.5\%	2.5	15	74	100\%
Sales	2.0	2.0	4	92	100\%

Source: Consultants' calculations based on Exhibit 10 and 11.

Exhibit 13
Share of Minority versus Maiority Owned Subsidiaries Abroad by Three Major Automotive Producers

	```Number and % of Minority-Owned Ventures(1-50%)```		Number and \% of Majority-Owned Ventures (51-100\%	
At Entry	\#	\%	\#	\%
Manufacturing	24	15	135	85
Sales	3	2	146	98
In 1976				
Manufacturing	12	11	105	89
Sales	4	4	97	96

Note: calculations exclude "unknowns".
Source: Consultants' calculations from Exhibit 10 and 11.




$$
\begin{aligned}
& \text { Q1 EQUATOHIAL } \\
& \text { OI2 ETHIOPIA } \\
& \text { OAMOU }
\end{aligned}
$$

$$
\begin{aligned}
& 813 \text { GABDH } \\
& 814 \text { GAMHIA }
\end{aligned}
$$

$$
\begin{aligned}
& \text { R15 GHINA } \\
& \text { O16 GUINEA } \\
& \text { 日17 IVOHY COAST } \\
& \text { R18 KFHYA } \\
& \text { B19 LESOTHO }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Q20 LIBFRIA } \\
& 821 \text { MALAGASY REPURL } \\
& 822 \text { MALAWT } \\
& 823 \text { MAURITIUS } \\
& 824 \text { MOZAMHIOUF. }
\end{aligned}
$$

[^3]

## EXHIBIT 15

Latest Ownership of Subsidiary by Area of Incorporation Number of Subsidiaries

Area	l-49\%	$50 \%$	$51-95 \%$   Number of	$96-100 \%$   Subsidiaries	Unk.	Total
North America	0	0	2	32	34	68
Latin America	5	0	8	42	10	65
Western Europe	1	2	9	105	39	156
Eastern Europe	0	0	0	0	3	3
Mid East	2	0	2	3	2	9
Near East	1	0	0	0	3	4
Africa	0	0	1	15	2	18
Far East	4	3	2	11	6	26
Australia/New Zealand	0	1	0	16	4	21
Total	13	6	24	224	103	370
\% Total	4	2	6	61	27	
Source: Exhibit 14.						

## EXHIBIT 16

Latest Ownership of Subsidiary by Area of Incorporation Ownership Percentage by Areal ${ }^{1}$

Area	1-49\%	$50 \%$	$51-95 \%$	$96-100 \%$	Total
North America	0	0	5.9	94.1	100.0
Latin America	9.1	0	14.5	76.4	100.0
Western Europe	0.9	1.7	7.7	89.7	100.0
Eastern Europe	0	0	0	0	0
Mid East	28.6	0	28.6	42.8	100.0
Near East	100.0	0	0	0	100.0
Africa	0	0	6.3	93.7	100.0
Far East	20.0	15.0	10.0	55.0	100.0
Australia/New Zealand	0	5.9	0	94.1	100.0
I					

Source: Exhibit 15.

## EXHIBIT 17

## Data for U.S. Automotive Multinationals Latest Ownership of Subsidiary by Country of Incorporation Ranking by Country ${ }^{\perp}$



Source: Consultants' calculations based on Exhibit 14.



0	000000
0	0000


$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	noooon
$\begin{aligned} & \circ \\ & \hline 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \hline 0 \end{aligned}$	$000-\infty$
8 8 0 0 $i$	$\pm 0 m-0 \text { O }$
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	のON-O

The Number of Employees
Number of Foreign Subsidiaries
Classified by Number of Employees and
Principal Activity in 1876


000teros

の○たーOた

## Exhibit 18

Exhibit 18
Number of Foreign Subsidiaries
Classified by Number of Employees and
Principal Activity in 1876

1010500

$\therefore$

Activity

DATA FOR U．S．AUTDMOTIVE MULTINATIONALS FINANCIAL STATISTICS AT LATEST
$(1976)$ by ACtivity
OHOFOFON
$1000-\infty$
NーーCとNにか




～
$-0000$
0000 m
00000000 ON
いN゚ーの
Br

```
\[
000
\]
\(\square\)

\(\qquad\)
\(00-0\)
\(\qquad\)
\(\qquad\) \(\cdots\)
（1） ．．

\(\stackrel{I}{N} 000000000000010000000000000000000000\)

7viOI 0000000000 00000 00000 \(000-0\) 0000 00000
00000 000000000000000\(000=0\)00000
 00000
 000000000000000COOOO
\[
00000
\] 00000

10000
00000 00000 \(0000 \square\)

00000
Sales
\[
\begin{aligned}
& \text { Categor } \\
& B 1 \mathrm{M}=\mathrm{siom}
\end{aligned}
\]
Category
\[
10 M=\$ 25 M
\]
```coooo
```

\qquad

00000 \qquad 00000 00000 0000000000

$$
L T
$$

$$
: 1 \mathrm{M}
$$

COUNTRY

806 CAPE VERDF ISLA 807 CENIRAL AHRICAN 809 CONGO, FRENCH 809 DEM. CONGD (BRA B10 DAHOMFY
R11 EQUATORIAL GUIN A11 ह:QUATORSA 812 ETHIOPIA
813 GAHON
814 GAMHIA gambia 815 GHANA
816 GUINEA
B17 IVUHY COAST
818 KENYA
819 LESOTHO
820 LIBFRIA
621 MALAGASY REPUAL
822 MAIAMI
823 MALIRITIUS
MOZAMAIOUE
825 HIGERIA
826 POPTUGUESE GUIN 827 HEUNIDN

点 000000000

E- 0000000000 E

Exhibit 21
Number of Foreign Subsidiaries Classified by Sales Category and by Area of Incorporation in 1976

| Area | Lt $\$ 1 \mathrm{~m}$ | $\$ 1 \mathrm{~m}-10 \mathrm{~m}$ | $\$ 10 \mathrm{~m}-25 \mathrm{~m}$ | $\$ 25 \mathrm{~m}-100 \mathrm{~m}$ | Gt $\$ 100 \mathrm{~m}$ | Unk. | Total |
| :--- | ---: | :--- | :--- | :--- | :--- | ---: | ---: | ---: |
| North America | 2 | 3 | 3 | 1 | 7 | 52 | 68 |
| Latin America | 8 | 8 | 4 | 5 | 12 | 28 | 65 |
| Western Europe | 10 | 7 | 9 | 19 | 25 | 86 | 156 |
| Eastern Europe | 0 | 0 | 0 | 0 | 0 | 3 | 3 |
| Mid East | 0 | 2 | 1 | 2 | 0 | 4 | 9 |
| Near East | 0 | 1 | 0 | 0 | 0 | 3 | 4 |
| Africa | 0 | 1 | 0 | 2 | 2 | 13 | 18 |
| Far East | 3 | 4 | 3 | 6 | 2 | 8 | 26 |
| Australia/New Zealand | 1 | 2 | 1 | 1 | 4 | 12 | 21 |

Source: Consultants' calculation based on Exhibit 20.

Exhibit 22
 Percentage of Foreign Subsidiaries by Sales Category and by Area of Incorporation in 1976

Area	Percentages (1)					
	Lt \$ 1 m	\$1m-10m	\$10m-25m	\$25m-100m	Gt \$100m	Total
North America	12.5	18.8	18.8	6.2	43.7	100.0
Latin America	21.6	21.6	10.8	13.5	32.5	100.0
Western Europe	14.3	10.0	12.9	27.1	35.7	100.0
Eastern Europe	0	0	0	0	0	0
Mid East	0	40.0	20.0	40.0	0	100.0
Near East	0	100.0	0	0	0	100.0
Africa	0	20.0	0	40.0	40.0	100.0
Far East	16.7	22.2	16.7	33.3	11.1	100.0
Australia/New Zealand	11.1	22.2	11.1	11.1	44.5	100.0

${ }^{1}$ Excludes unknown category.

Source: consultants' calculation based on Exhibit 20.

Exhibit 23
Number of Foreign Subsidiaries by Area of Incorporation as Percentage of Total Number of Subsidiaries within Each Sales Category in 1976

Area	Lt \$1	\$1-10m	\$10m-25m	\$25m-100m	Gt \$100m
North America	8.3\%	10.7\%	14.3\%	2.8\%	13.5\%
Latin America	33.3	28.6	19.0	13.9	23.1
Western Europe	41.7	25.0	42.8	52.8	48.1
Eastern Europe	0	0	0	0	0
Mid East	0	7.1	4.8	5.5	0
Near East	0	3.6	0	0	0
Africa	0	3.6	0	5.5	3.8
Far East	12.5	14.3	14.3	16.7	3.8
Australia/New Zealand	4.2	7.1	4.8	2.8	7.7
	100.0\%	100.0\%	100.0\%	100.0\%	

Source: Consultants' calculations based on Exhibit 20.

Exhibit 24

Ranking ${ }^{(1)}$ of Number of Foreign Subsidiaries by Country of Incorporation and Sales Categories in 1976.

Area	Lt $\$ 1 \mathrm{~m}$	$\$ 1 \mathrm{~m}-10 \mathrm{~m}$	$\$ 10 \mathrm{~m}-25 \mathrm{~m}$	$\$ 25 \mathrm{~m}-100 \mathrm{~m}$	Gt	$\$ 100 \mathrm{~m}$	Unk.	Total
United Kingdom	2	2	1	5	5	35	50	
France	1	2	0	2	6	11	22	
Australia	1	2	1	0	3	10	17	
West Germany	2	0	1	0	2	11	16	
Brazil	1	0	1	1	3	7	13	
Mexico	2	1	2	0	3	4	12	
Italy	3	0	0	1	1	6	11	
South Africa	0	0	0	1	2	8	11	
Argentina	1	1	1	0	3	4	10	
Japan	2	0	0	3	2	2	9	
Spain	0	2	1	0	1	4	8	
Switzerland	1	0	0	1	3	3	8	
Venezuela	0	2	0	0	3	2	7	
Columbia	1	1	0	3	0	1	6	
Sweden	0	0	0	0	2	4	6	

[^4]Source: Consultants' calculation based on Exhibit 20.

Exhibit 25
Concentration of Foreign
Subsidiaries and by Country of Incorporation and Sales Categories in 1976.

Sales Categories	Ratio of Subsid. in 5 Largest Countries to Total Subsid. ${ }^{1}$	Ratio of Subsid. in 10 Largest Countries to Total Subsid. 2	Ratio of Subsid. in 15 Largest Countries to Total Subsid. ${ }^{3}$
Lt. \$1m	. $318(7 / 22)$. $682(15 / 22)$. 773 (17/22)
\$1m-10m	. 240 (6/25)	. 320 (8/25)	. 520 (13/25)
\$10m-25m	. 222 (4/18)	. 389 (7/18)	. 320 (8/25)
\$25m-100m	. 229 (8/35)	. 371 (13/35)	. 486 (17/35)
Gt. \$100m	. 422 (19/45)	. 667 (30/45)	. 867 (39/45)
Unk.	. 471 (74/157)	. 624 (98/157)	. 713 (112/157)
Total	. 391 (118/302)	; 566 (171/302)	. 682 (206/302)
$1_{\text {Large }}$ in the Sense of having the largest number of subsidiaries; includes United Kingdom, France, Australia, West Germany \& Brazil			
${ }^{2}$ Includes Mexico, Italy, South Africa, Argentina and Japan in addition to the above.			
3 Includes S	, Switzerland, Venez	, Columbia \& Sweden in	ition to the above.

Source: Consultants' calculations based on Exhibit 20.

Exhibit 26

OOOO CHNMO
UNKNOWN -m O M

$000 \mathrm{~m}+000$ $\rightarrow 0$ No 0 000 00000 000000000 Finance category (Assets) | IINANCE CATEGORY |
| :--- |
| 810 MOS 25 M 825 MOB |
| 100 M |

$0 N-00$
\square

 200 2\%-1OLD: ARITIS 200 2ZOTOLD: 203 BARBAROS
204 BEPMUDA

204 BEPMUDA
205 EELIZE (BRITISH
205 ARITISH HONDURA 205 ARITISH HONDURA
206 CANAL ZONE (PAN
207 COSTA HICA 207 COSTA HICA
208 CUBA

$$
209 \text { DOWINICA }
$$

$$
\begin{aligned}
& 211 \text { EL SAIVADDA } \\
& 212 \text { GFEMAOA }
\end{aligned}
$$

$$
\begin{aligned}
& 210 \text { DOUINICAN R } \\
& 211 \text { EL SALVADDR }
\end{aligned}
$$

$$
\begin{aligned}
& 213 \text { GUADFLOPE } \\
& 214 \text { GUATEWALA }
\end{aligned}
$$

215 HAITI 16 homila 217 JAMAICA 218 MARTIRIOUE 219 MEXICO
pənuT7uos
9 7TqTYXG

-

00000
$000 \rightarrow 0$
$00<00$
$000=0$
0000 N
0 NOCO c 0000 00000 00000 00000 00000 0 0000 $0 N 0000000$

COUNTRY

CODE

832 SWAZILAND
833 TANZANIA
834 TOGO

边
日3 CONGO BELGIAN
838 REP．CONGO（2AI 838 2AIPE（REP．OR 839 MAOGASCAR 901 AUEHICAN SAMOA
907 HRITISH SOLOMON 902 HRITISH SOLOMON
903 HRUNEI

904 нив 9
90 CHINA（MATNLIANO
907 CHINA（TATWAN） 907 TAIWAN

90日 FIJI 909 CUAM

911 HONG KONG
912 INUUNFSIA（2ND 912 INOUNFSIA（2ND LS（）VISANOONI ZIG 913 JAPAN
914 KOPEA（NOPTH）
915 KOPEA（SOUTH） 916 LAUS

917 MACAU
918 MALAYSIA
919 MONGOLIA
919 MONGOLIA
920 NEW CALEDNNIA
921 NEW GUINEA AND
FINANCE CATEGORY OF SUBSIDIARY BY COVAIAA: DE ; GCGRAOHATAL..

CODE COUNTRY
922 NEA HEHRIOES
923 PHILLIPINES
924 PORTUGGESE TIMO
925 RYUKYUISLANDS
926 SINGAPURE
927 THAILAMO
928 TONGA
929 VIETNAM (NORTH)
930 VIETNAM (SOUTH)
931 WESTERN SAMOA

LT 1M

LT

Source:

Exhibit 27

Number of Foreign Subsidiaries Classified by Asset Categories and by Area of Incorporation

Area	Asset Categories				Gt \$100m	Unk.	Total
	Lt \$lm	\$1m-10m	\$10m-25m	\$25m-100m			
North America	3	4	0	3	6	52	68
Latin America	9	5	6	11	8	26	65
Western Europe	13	17	17	17	10	82	156
Eastern Europe	0	0	0	0	0	3	3
Mid East	0	2	1	1	0	5	9
Near East	0	1	0	0	0	3	4
Africa	0	2	1	1	1	13	18
Far East	4	7	4	0	2	9	26
Australia/New Zealand	0	3	2	1	3	12	21

Source: Consultants' calculations based on Exhibit 26.

Exhibit 28

Number of Foreign Subsidiaries as Percentage of Total Subsidiaries within Each Region Classified by Asset Categories

Asset Categories
Area

North America	18.8	25.0	0	18.8	37.5	100.0
Latin America	23.1	12.8	15.4	28.2	20.5	100.0
Western Europe	17.5	23.0	23.0	23.0	13.5	100.0
Eastern Europe	0	0	0	0	0	0
Mid East	0	50.0	25.0	25.0	0	100.0
Near East	0	100.0	0	0	0	100.0
Africa	0	40.0	20.0	20.0	20.0	100.0
Far East	23.5	41.2	23.5	0	11.8	100.0
Australia/New Zealand	0	33.3	22.1	11.1	33.3	100.0

[^5]Source: Consultants' calculations based on Exhibit 27.

Exhibit 29

Data for U.S. Automotive Multinationals

Finance Category: Subsidiaries by Country of Incorporation as Percentage of Each Finance Category - Assets

Area	Lt \$lm	\$1m-10m	\$10m-25m	\$25m-100m	Gt \$100
North America	10.3\%	9.8\%	0	8.9	20.0
Latin America	31.1	12.2	19.4	32.4	26.7
Western Europe	44.8	41.4	54.8	50.0	33.3
Eastern Europe	0	0	0	0	0
Mid East	0	4.9	3.2	21.9	0
Near East	0	2.4	0	0	0
Africa	0	4.9	3.2	2.9	3.3
Far East	13.8	17.1	12.9	0	6.7
Australia/New Zealand	0	7.3	6.5	2.9	10.0
Total	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Source: Consultants' calculations based on Exhibit 27.

Exhibit 30

Ranking of Number of Foreign Subsidiaries classified by country of Incorporation and Asset Categories (I)

Source: Consultants' calculations based on Exhibit 26.

Exhibit 31

Concentration of Number of Foreign Subsidiaries Classified by Country of Incorporation and Asset Categories

Financial Categories	Ratio of Subsid. in 5 Largest Countries to Total Subsid.	Ratio of Subsid. in 10 Largest Countries to Total Subsid.	Ratio of Subsid. in 15 Largest Countries
to Total Subsid.			

Source: Consultants' calculations based on Exhibit 26.

ontinued
NOOOO
NOOOO

0
0
1
0
0

NNNOMOONOO $000-\mathrm{m}$ mmooo
$000-$
-UNK

FINANCE CATEGURY OF SUBSIOIARY BY COUNTRY OF INCORPORATION

Source: Consultants' calculations based on Exhibit 32.

Exhibit 34
Number of Foreign Subsidiaries As Percentage of Total Subsidiaries Within Each Region Classified by Equity Categories

Equity Categories

${ }^{1}$ Excludes unknown category
Source: Consultants' calculations based on Exhibit 33.

		Exhibi			
	er of	reign	osidiare		
	Percen	ge of T	al Subsid	ries	
	hin Ea	Equity	ategory	assified	
		Geogra	ic Region		
Area	Lt \$lm	\$1m-10m	\$10m-25m	\$25m-100m	Gt \$100m
North America	6.1\%	10.2\%	13.0	14.3\%	42.8
Latin America	21.2	16.9	30.4	35.7	14.3
Western Europe	53.0	44.0	47.9	35.7	28.6
Eastern Europe	0	0	0	0	0
Mid East	1.5	3.4	0	0	0
Near East	1.5	0	0	0	0
Africa	3.0	5.1	0	0	0
Far East	12.2	10.2	0	0	14.3
Australia/New Zealand	1.5	10.2	8.7	14.3	0
Total	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Source: Consultants' calculations based on Exhibit 33.
$\frac{\text { Exhibit } 36}{\frac{\text { Ranking of Number of Subsidiaries }}{\text { Classified by Data for U.S. Automotive }}}$
$\frac{\text { Multinationals Equity Category and Country }}{\text { Incorporation(l) }}$

Area	Lt \$ 1 m	\$1m-10m	\$10m-25m	\$25m-100m	Gt \$100m	Unk.	Total
United Kingdom	11	3	3	3	0	30	50
France	2	3	4	0	1	12	22
Australia	1	4	2	2	0	8	17
West Germany	6	1	1	0	2	6	16
Brazil	1	1	1	1	2	7	13
Mexico	2	2	2	1	0	5	12
Italy	4	1	0	0	0	6	11
South Africa	1	2	0	0	0	8	11
Argentina	3	1	1	2	0	3	10
Japan	3	1	0	0	2	3	9
Spain	1	3	0	1	0	3	8
Switzerland	3	1	0	0	1	3	8
Venezuela	3	2	1	0	0	1	7
Columbia	1	1	1	1	0	2	6
Sweden	1	1	0	1	0	3	6

${ }^{1}$ Includes 15 countries with largest number of total subsidiaries, 1976 (excluding U.S. \& Canada).

Source: Consultants' calculations based on Exhibit 32.

Exhibit 37
Concentration of Number of
Foreign Subsidiaries Classified by Country of Incorporation and Equity Category

Financial Categories	Ratio of Subsid. in Largest Countries to Total Subsid.	Ratio of Subsid. in 10 Largest Countries to Total Subsid.	Ratio cf Subsid. in 15 Largest Countries to Total Subsid.
Lt. $\$ 1 \mathrm{~m}$	$.339(21 / 62)$	$.548(34 / 62)$	$.649(43 / 62)$
$\$ 1 \mathrm{~m}-10 \mathrm{~m}$	$.226(12 / 53)$	$.359(19 / 53)$	$.509(27 / 53)$
$\$ 10 \mathrm{~m}-25 \mathrm{~m}$	$.550(11 / 20)$	$.700(14 / 20)$	$.800(16 / 20)$
$\$ 25 \mathrm{~m}-100 \mathrm{~m}$	$.500(6 / 12)$	$.750(9 / 12)$	$1.000(12 / 12)$
Gt. $\$ 100 \mathrm{~m}$	$.625(5 / 28)$	$.875(7 / 8)$	$1.000(8 / 8)$
Unk.	$.429(63 / 147)$	$.599(88 / 147)$	$.680(100 / 147)$
Total	$.391(118 / 302)$	$.566(171 / 302)$	$.682(206 / 302)$

${ }^{1}$ Large in the sense of having the largest number of subsidiaries; includes United Kingdom, France, Australia, West Germany \& Brazil.
${ }^{2}$ Includes Mexico, Italy, South Africa, Argentina \& Japan in addition to the above.
${ }^{3}$ Includes Spain, Switzerland, Venezuela, Columbia \& Sweden in addition to the above.

Source: Consultants' calculations based on Exhibit 32.
$\frac{\text { Exhibit } 38}{\text { Non-European Nations with Subsidiaries }}$
Having Sales, Assets, or Equity in Excess
of $\$ 100$ Million in 1976

The Number of Subsidiaries

	$\frac{\text { Sales }}{}$	$\frac{\text { Assets }}{}$	Equity
1) Australia	3	3	0
2) New Zealand	1	0	0
3) South Africa	2	1	0
4) Mexico	3	1	0
5) Argentina	3	3	0
6) Brazil	3	3	2
7) Venezuela	3	0	0
8) Japan	2	2	2

Source: Exhibits 20, 26 and 32.
Exhibit 39
Number of Foreign Subsidiaries Classified
by Their Principal Activity and Percentage
of Sales Exported in 1976.
Manufacturing R\&D Sales Other
Activity

Activity	Manufacturing	R\&D	Sales	Other	Unknown	Exited	Total
Sales							
Exported							
<10\%	49	0	29	3.	0	0	81
10\%-50\%	20	0	0	0	1	0	21
$>50 \%$	11	0	2	1	1	0	15
Unknown	44	0	75	39	28	79	255
Total	124	0	106	43	20	79	372

Source: Harvard Multinational Enterprise Project.

Exhibit 40
Data for U.S. Automotive Multinationals Percentage of Each Activity by Export Classification*

$\stackrel{\%}{\circ} \text { Sales Exported }$	Manufacturing	$\stackrel{\%}{\circ}$	\% Other
<10\%	61	94	75
10\% - 50\%	25	0	0
>50\%	14	6	25
Total	100\%	100\%	100\%

*Unknowns not included.

Source: Consultant's calculations based on Exhibit 39 .
DAZA ROR U.S. AUTOMOTIVE MULTINATIDHAL, S LATEST

Lyodx3 OL s37vs

227 rijuJCAD AND TO 228 VIRGIN ISCANOS
300 LATGA ALCEKICA? 300 LATEPALEERICA
301 HULAVIA
302 CHILE
303 CNLOARIA
304 ECIIAOCIR 305 PEINU
$3 U G$ AFIFENITNA
304 FसFMCH CUIAAMA

${\underset{0}{\infty}}_{\infty}^{\infty} \quad$ onn
TOTAL
phincipal mapket gar sabes by coulitry of incurionals

$00=0=$ \qquad


```
# sonc-
```


$\underset{5}{\vec{L}}$
000000000
0000 cocce oceco
PKIICAHM，MAMKET OF SALES HY COUNTRY UF INCORPURATIOH AT LATEST
$=0000$
 $\begin{array}{ll}50 \% & \text { UN } \\ 0 \\ 0 & \\ 0 & \\ 0 & \\ 0 & \\ 0 & \end{array}$ － 00～づc $-0 c$ 00000 00000 \qquad
$\underset{0}{0} \quad 00=00$

7Cん WAKJSTAN 76 HAKISTAN
707 SEICHFIMA．S
702 SIXNIM

日の，2ל－1川1n！nymrit
 BC， 1 トに＇CH SHMALILA
R（．）LHI：ClA GCう CMーF：WHHFJSLA
 －Culaco（8）

 $000-0$ 0000 $\rightarrow 00$

\qquad $0=0 \sim 0$ $0=200$ cecno coccn

CCDF	collitrr
917	INDUNFSA（15T
913	JAEAAN
914	FOFFA（NURTH）
915	kurta（SUIJTH）
916	l．als
917	MACAI）
18	iA AIA ASIA
919	nuvgolia
921	t：ビ八 C\＆IMCONIA
	：GFin GUSNEA AND
927	ner hebrides
923	PHILLIDIHES
92.	PIHIUGUESE．Timo
	HyHPYM lscands
925	Salicarone
927	phailamo
924	Ticta
927	VIFINAM（HOPTH）
	VIETINA（SOUTH）
	CEISIEHR：SAMUA
	ilital

Exhibit 42

Number of Foreign Subsidiaries Classified by Their Percentage of Export Sales and Area of Incorporation
\% Sales Exported
Area
〈10\% 10-50\% $\rangle 50 \%$ Unk. Total

Number of Subsidiaries

North America	6	3	1	58	68
Latin America	24	5	0	36	65
West Europe	25	9	14	108	156
East Europe	0	0	0	3	3
Mid East	3	0	0	6	9
Near East	1	0	0	3	4
Africa	4	0	0	14	18
Far East	12	2	0	12	26
Australia/New Zealand	6	1	0	14	21

Source: Exhibit 41.

Exhibit 43

Number of Foreign Subsidiaries As Percentage of Total Subsidiaries within Each Region Classified by Sales Export Levels in 1976 (1)

$l_{\text {Unknowns }}$ excluded.
Source: Consultants' calculations based on Exhibit 42 .

Exhibit 44

Number of Foreign Subsidiaries as a Percentage of Total Subsidiaries Within Each Sales Export Level Classified by Geographic Areas in 1976
$\%$ Sales Exported

Area	$\langle 10 \%$	$10-50 \%$	$>50 \%$ Percentage	Unk.	Total
North America	7.4	15.0	6.7	22.8	18.4
Latin America	29.6	25.0	0	14.2	17.6
West Europe	30.9	45.0	93.3	42.5	42.2
East Europe	0	0	0	1.2	0.8
Mid East	3.7	0	0	2.4	2.4
Near East	1.2	0	0	1.2	1.1
Africa	4.9	0	0	5.5	4.9
Far East	14.8	10.0	0	4.7	7.0
Australia/New Zealand	7.4	5.0	0	5.5	5.7
Total	100.0	100.0	100.0	100.0	100.0

Source: Consultants' calculations based on Exhibit 42 .

Exhibit 45
National Locations of Subsidiaries Exporting 10-50 Percent or More of their Sales in 1976

$$
\begin{aligned}
& \text { Greater than } \\
& 50 \% \text { Exports } \\
& \hline \text { Nation }(*) \\
& \hline
\end{aligned}
$$

$\frac{10-50 \% \text { Exports }}{\text { Nation }}$

1)	Canada (1)	Australia	(1)
2)	Belgium	(1)	Canada

[^6]Source: Consultant's calculations from Exhibit \& 4.
$\left.\begin{array}{ll}\text { Abroad } & \begin{array}{l}\text { Refers to all countries other than } \\ \text { the United States and Canada. }\end{array} \\ \text { Acquired R\&D Units }\end{array} \quad \begin{array}{l}\text { Refers to research and development } \\ \text { (R\&D) resources obtained through the } \\ \text { acquisition of another organization }\end{array}\right\}$

Corporate Technology Work

Exited Subsidiaries

External Transfers of Technology

Financial Portfolio Theory of Foreign Direct Investment

Foreign

Hymer Theory of Foreign Direct Investment

Research, development, and engineering work performed expressly for the corporate parent of a multinational enterprise, usually of a long-term exploratory nature.

Refers to the number of subsidiaries which have left a multinational system for any number of reasons.

Those transfers of technolocy that are obtained from sources (e.g., another company) outside the multinational system as opposed to transfers originating within the enterprise and transferred between organizational units of the enterprise.

A theory that states national firms become multinational in order to reduce the risks of operating in a single economy and thereby offer their investors a diversified portfolio in the sense of income streams emanating from different national economies.

Refers to activities or attributes that occur outside the United States and Canada unless otherwise noted.

A theory that states the reason for foreign direct investment is some oligopolistic advantage, most probably either economies of scale (a cost advantage) or "superior" proprietary knowledge (a product/process advantage).

Research, development, and engineering work performed to produce new or improved products and/or processes expressly for a specific national or regional (e.g., European) market.

Internal Transfer of Technology

Local Content

Multinational System

Multinational Technology Work

Transfers of technology that originate and occur between different organizational units within a multinational enterprise.

The amount or share of a product's total value accounted for by suppliers and affiliates within a particular nation.

The network of affiliates that are owned and controlled by an enterprise. In this study minority or nonconsolidated subsidiaries were not considered part of the system.

Research, development, and engineering work performed to produce new or improved products and/or processes expressly for near simultaneous manufacture in major world markets.

A theory that states the motivating factors for making foreign direct investments are related to "follow the leader," "bandwagon," and "hostage" relationships existing between oligopolistic competitors.

A term used in some tables that refers to foreign subsidiaries whose principal activity is "other" than sales, manufacturing, or R\&D.

A partial theory that seeks to explain
Product Life Cycle Theory of International
Trade and Investment
trade and foreign investments of some
U.S. enterprises that produce high income, labor saving products. The theory holds that product/process innovation provide U.S. producers with an absolute advantage initially and a positive export position. Over time U.S. producers will often make direct investments abroad in manufacturing facilities in order to protect their export markets as these markets are threatened by rising foreign competition. This foreign competition occurs as market sizes become large enough to support domestic production or when government actions (tariffs, local content regulations, etc.)

Product Life Cycle (Concluded)
effectively protect the market from lower price imports. As product and its technology become more standardized and widely available the U.S. producers share of world exports and world production levels off and eventually declines.

Production Activities

Regional

R\&D

Research and Development

In this study, this expression refers to both assembly and manufacturing operations.

Unless otherwise noted, this term is used in an international context, where "regional" refers to groups of nations located within a recognized political/economic area (e.g. Europe, Latin America).

In this study, $R \& D$ is defined narrowly to exclude engineering, design, testing and other activities not associated strictly with basic and applied research or exploratory and advanced development.

In this study, RD\&E was defined broadly to include all engineering, testing, and design activities and corresponds to reported Form the Sec's lok figures.

Any research, development, or engineering activities that result in new knowledge, and/or new/improved products or processes based on conventional automotive engine and fuel technology (i.e., the internal combustion engine and gasoline).

Any research, development, or engineering activities that result in new knowledge, and/or new/improved products of processes not based on conventional automotive engine or fuel technology (i.e., other than the internal combustion engine and gasoline).

Technology	
Transfer	A restrictive definition is used in
	this study that states a technology
	transfer occurs or is completed only
	when a technique, idea, or process
	developed by one organizational unit
	is incorporated in the production of
	products offered for sale by another
	organizational unit.
Transfer Technology Work	Usually development or engineering
	work of a technical service nature
	performed abroad to help "transfer"
	technology originally supplied by a
	multinational parent or other foreign
	subsidiary in the multinational system.
Unknown Subsidiaries	A term appearing in some tables that
	refers to those subsidiaries whose
	principal activities are not known
	definitely, but, for the msot part,
	are reportedly small sales subsidiaries

APPENDIX: REPORT OF INVENTIONS

The work performed under this contract led to no new inventions. However, several findings were revealed about the multinational activities of the General Motors Corporation, Ford Motor Company, Chrysler Corporation, and the American Motors Corporation. These findings concerned the performance of research, development, and engineering abroad by the four U.S. multinationals, their transfer of technology, and the diffusion of their production operations.

OOEt＇3SN 3IVAIYd HOA MLIVNJd
ss3nisna רwilitio

NOILVIHOdSNVHL f0 IN3WIUVdヨa sin
arvd s334 anv 39visod

[^0]: *One of the best and most recent summaries is found in Yoshi Tsurumi's Multinational Management: Business Strategy and Government policy, Ballinger Publishing Co., Cambridge, Mass., 1977, pp. 1-16 and 73-83.

[^1]: *See Volume II, Foreign Facilities and Operations, Sections 1.3, 2.3, 3.3, 3.4.

[^2]: *See Volume 3.

[^3]: 825 NIGERIA
 826 PORTUGUESE GUIN
 826 HEIJNION
 Q27 RUANDA
 828 RUN SAO TOME AND PR
 829 SAN
 826 HEIJNION
 Q27 RUANDA
 828 RUN SAO TOME AND PR
 829 SAN
 29 SAD TOME AND PR

[^4]: ${ }^{1}$ Includes 15 countries with largest number of total subsidiaries, 1976 (excluding U.S. \& Canada).

[^5]: 1
 Excludes unknown category.

[^6]: * the number of subsidiaries.

